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1. Introduction

Let xl, xz, ceey xn be random variables with order statistics denoted by

X <X

1:0 $ $oeer SX 0 Bounds on the expected values of order statistics

2:n
vhen the X, are iid with finite mean u and finite variance 02 are vell knovn and
given in David (1981, Chapter 3). Arnold and Groeneveld (1979) have derived
bounds for expectations of order statistics when the identical and independence
conditions for the distributions are dropped. Define "g:n to be B[xg:nl for

g=1....,n then the Arnold and Groeneveld bound is:

%

@ b= (o ru-n?) ng ) < Mgin S W+ (e} + zwy-)?) E%?.:Tfl)]

%

vhere the summations are from 1 to n and the bars denote means. Vhen ;= u and

ai = az for all i then (1) becomes

(2) wu-o ("—;—3]% SugpSu+o —%]lb

In this paper, new bounds for expected values of order statistics are
proposed vhich do not require finite variances and can take into account known
dependence among subsets of k variables for k < n.

2. The Nev Bounds

From here on, let Sj be a set of k-1 integers from 1,2,..., j-1 for j > k.

Let j1 < j2 < ... < jk-l be the integers in sj. Nov an obvious fact is stated.
FACT 1:

FO!‘ any j = k+1,c-o,n;

Hax(xj,le, sz,..., X ) - Hax(le,sz,-~-,xjk_1) 20

R

This fact is used to prove the folloving lemma.
LEMMA 1:

(3) Max (xl, Xgpeosy xn) < Max (xl, Xgreoes xk) +




n
I |Max(x ,X; X, 4000, X ) - Max (x, , x;, ,..., X )
jakel 373,73, Ik 3, Ik ]

Proof - Let n* be the smallest integer such that x: = Max (xl,xz,...,xn)
CASET - n" <k

Then Max (xl,..., xn) = x: = Max (xl,...,xk) and from fact 1, it follows
that (3) holds.

CASE II k<n® ¢<n

*
n
*
Then Max (X;,.0.y X ) = X = Max(X,y.0.9%,) + I Max(x,,...,X;)
1 n n 1 k ukel [ 1 3
- Hax(xl,...,xj_l)]
n* [
= Max (xl,...,xk) + I 0 if xj 5 Max (xl,.b..’xj'l)

j=k+l [x, - Max(xXqy...,%X; ;) otherwvise
3 1 j-1

* -
n 3
< Max (xl""’xk) . I 0 if xj £ Max (le,...,xjk-l)
j=k+1 & - Max(x, ,...,%x ) otherwise
3 3y It
n*
= MaxX (Xqg0009%,) + £ Max(X.,, X; 4000y X ) - Max(x, ,...,x )
1 k j-k+1[ 3", Ip-1 i jk—l]
{by FACT 1}
E |
S Max (Xq9eeey%.) + I Max (X, ,X,: yeooysX ) - Max(X; ,...,% )
1 k™ jakel 3" k-1 ) Ik-1
THEOREM 1:

An upper bound "k("n~n) for Moen is given by:

n
(4) w_ . €U (u . ) = E[Max(X,,...,X,)] + [ |E[Max(X., X. ,...,X )]
n:n k' n:n 1 k juaksl [ j le jk-l

- E[Max(X, ,...,X )}

Provided the above expectations are all defined and finite.




Proof: Taking expectations over (3)

All of the expectations in (4) vill be defined and finite if uy is finite
for all i=1,...,n. These expectations may be defined and finite under other
circumstances as vell. Note that this bound does not require finite variances.

The concept behind this theorem is similar to that of the Bonferroni

inequalities. If each variable Xi takes on only the values O and 1 then xn_

n
n

can be thought of as U {Ei) vhere Bi is the event that Xi = 1. Vhen this is
i=l

the case, the bound given by (4) is the same as the SCAUB improved Bonferroni
bound presented in Hoover (1988).

No matter what the ordering of variables Xl, xz,...,xn or choice of
elements j1 < j2 < ...< jk-l in sj: j=k+1,..., n, (4) is an upper bound. The
value of this upper bound does, hovever, depend on the ordering of variables and
choice of elements. In general, the bound given by (4) will be lover if for all
j=k+1l,..., n: (i) The variables represented in Sj have a high positive
correlation with variable Xj and/or (ii) The variables represented in sj are
very likely to contain the maximum value from Xl, XZ,..., xj.

Now a lowver bound for ¥1:n is given
COROLLARY 1.1:

If all values in (5) are definedAand finite, which will be true if ¥y is
finite for all i, then one can produce Lk‘"l:n)’ a lower bound for Yi.p? of the
folloving form:

n

(5)  uy, 2 Ly(uy, ) = E(MER(Xp,.. X0 j=:¢1 [i[uin(xj, le,...,x

- E[MIN(X, ,.-e)X; )]
3 Ig-1 ]




Corollary 1.1 immediately follows from applying Theorem 1 to (-Xl,..., -xn).

The Range of (xl,...,xn) is defined as Hax(xl,...,xn) - Hin(xl,...,xn) =

ann - xn:l‘ Refer to this as r.- Then an upper bound for E[rn] is given below.

COROLLARY 1.2:

If all values in (6) are defined and finite, which will be true if uy is
finite for all i, then one can produce Uk(rn), an upper bound for B[rn], of the
folloving form:

n

(6) E[r_] €U (r ) = E[Range(X,,...,X. )] + I E[Range(X., X, ,...,X )]
n® = "k*'n 1 kT jakel [ 3 k-1

- E[Range(X., ,..., X )]
RERE RN

Proof:
{By Theorem 1 and Corollary 1.1}

E(r,] = u < (4) - (5) = (6)

n:n ~ Ml:n
It will nov be shown that increasing k, the size of the subset, sharpens
the bounds given by Theorem 1 and its corollaries 1.1 and 1.2.
THEOREM 2
As before, let Sj be a set of k-1 integers (j1 < j2 < ...< jk-l) from
1,2,..., j-1 for j > k+1l. Nowv let k’ = k+l1 and Sj be a set of k integers from
19240009 J-1 for j 2 k’+1 = k+2, vith Si > Sj. Let j be the unique integer in
55 vhich is not in Sj. Finally, define Ui(un:n) to be the upper bound (4)
corresponding to S/, Lﬁ(ul:n) to be the lower bound (5) corresponding to 83 and

U&(rn) to be the upper bound (6) corresponding to Sj. As before, assume all

expectations are defined and finite. Then:

(1) “n:n < Uk'(un:n) < Uk(un:n)




(i1) Y1:n 2 Lk'(ulzn) 2 Lk(ulzn)
(111) E[r ) < U '(r ) S Up(r)
Proof of (i)

FACT 2: for all a,b,c

[Max(a,b,c) - Max(a,b)] - [Max(b,c) - (b)] =

0 if ¢ € Hax(a,b)] _[0 ifcg b]
[c-Max(a,b) if ¢ > Max(a,b e-b if ¢ > b} T
[0 if ¢ <D
0 ifcd>ba < 0 and thus, whenever it is defined:
b-a if c 2a>b
b-c ifa>c> b

E[Max(A,B,C) - Max(A,B)] - E[Max(B,C) - (B)) <O

but if S! . is defined to be (1,2,...,k) and (k+1) is defined to be the

k+1
unique integer from (1,2,...,k) which is not in Sk+1’ then:

. Uk'(un:n) - Uk(un:n) can be written as
. n
j=:+1 [ ElMax(A;, By, C;) - Max(Ay, By)] - E[Max(;, C;) - (B))] ]

which by Fact 2 is a summation of nonpositive terms and thus must be
nonpositive

vhere Cj = Xj
Bj = Hax (le, ij’coc’ xjk-l) FOI Jl, Jz, ey jk—l € Sj
Ay = X vhere j is the element in S§ vhich

is not in Sj

Proofs of (ii) and (iii) follow from (i) in the same fashion that the proofs of
. Corollaries 1.1 and 1.2 followed from Theorem 1.
Finally, Theorem 1 and Corollary 1.1 can be extended to produce upper and

lover bounds for E[xg'nl vhere k < g < n-k+l .




~ THEOREM 3:

Upper and lover bounds for u are

g:n
(7) € Any upper bound for ug'g given by (4) under the assumptions

£
Hgin 3 VYg:g 2
of Theorem 1.
(8) ug:n 2 ul:n-g+1 2 Any lower bound for ul:n-g+1 given by (5) under the
assumptions of Corollary 1.1.
Proof

iff x < Hin(xg*l,...,xn) . Othervise x > Taking

X = X X .
g:n g:8 B:g g:8 g:n
expectations yields the inequalities in (7). The proof of (8) is similar.

3. Example of Upper Bound for Yoen

Let © be a random angle vith £(8) = 7= for -ng&Xn and let X, = Cos(8), X,
= Cos(6+¢), X3 = CoS(6+2€),).4., Xn = Cos(©+(n-1)€) for € > 0. Then by (3) vith
k=2 and j1 = j-1 for j=3,...,n, it follows that

n

¥nen € Uplin.g) - ElMARCLED) « L [EtMaxcx, %, ) - E1%,1]
(Since E[Xj] = 0 for all j)
n
= £ E[Max(X,, X. ,)]
j.z j j'l

{invariance}

= (n'l) E[Hax(xli xz)]

(9) = (n-1) E[Max(Cos(8), Cos(6+¢€))]

{symmetry)

- (n-1) 2 E[Cos(8) Licos(8) > cos(Bee)]]

(10) = ﬁigill | sin(arctan (13525151

TTORA




For all values of n and ¢, it is possible to ‘compute (10) vith a hand
calculator and easy to obtain. (9) by evaluating a single integral with a

computer. At the same time, to calculate the exact value of u wvould require

n:n

a more difficult integration than needed for (9). Clearly a lower bound for

Mnin is E[Hax(xl, xn)]. Table 1 gives upper and lower bounds for Moen vhen

€ = /180 for various values of n.
Table 1

Upper and Lover Bounds for the

E[Max(Cos(©), Cos(© + Tgb),...,Cos(e + igal n)] vhere

1,
f(O) = T n<oe<n

_ Lower Bound Upper Bounds

(n-1) E[Max(cos(©), cos(© + "I;%n)] (9) or (10) Arnold & Groeneveld
5 0.027769 . 0.027778 1.581139

10 0.055488 0.055556 2.236068
50 0.269051 0.277778 5.000000

90 0.450111 0.500000 6.708204

For this problem, Arnold and Groeneveld’s distribuiion free bounds are
alvays larger than 1.0, the maximum value a cosine function can take, and thus
unsatisfactory. On the other hand; the nev upper bounds proposed in this paper
vhich incorporate knovn dependencies are quite sharp, even for large n, as is

indicated by their closeness to the lower bounds.
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